Abstract

The frequency of conjugative transfer of antimicrobial resistance plasmids between bacteria within the gastrointestinal tract of lesser mealworm larvae, a prevalent pest in poultry production facilities, was determined. Lesser mealworm larvae were exposed to a negative bacterial control, a donor Salmonella enterica serotype Newport strain, a recipient Escherichia coli, or both donor and recipient to examine horizontal gene transfer of plasmids. Horizontal gene transfer was validated post external disinfection, via a combination of selective culturing, testing of indole production by spot test, characterization of incompatibility plasmids by polymerase chain reaction, and profiling antibiotic susceptibility by a minimum inhibitory concentration (MIC) assay. Transconjugants were produced in all larvae exposed to both donor and recipient bacteria at frequencies comparable to control in vitro filter mating conjugation studies run concurrently. Transconjugants displayed resistance to seven antibiotics in our MIC panel and, when characterized for incompatibility plasmids, were positive for the N replicon and negative for the A/C replicon. The transconjugants did not display resistance to expanded-spectrum cephalosporins, which were associated with the A/C plasmid. This study demonstrates that lesser mealworm larvae, which infest poultry litter, are capable of supporting the horizontal transfer of antibiotic resistance genes and that this exchange can occur within their gastrointestinal tract and between different species of bacteria under laboratory conditions. This information is essential to science-based risk assessments of industrial antibiotic usage and its impact on animal and human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.