Abstract

The surface modification, functionalization, and conjugation of undoped and 11 at.% Eu3+-doped TbPO4 ·H2O nanowires by using silica, a thyocyanate functional group, and immunoglobulin G, respectively, are described in this paper. For the core layer of obtained conjugated nanowires, the undoped TbPO4 ·H2O exhibited characteristic photoluminescent green emission corresponding to 5 D 4 → 7 F J transitions (J = 6, 5, 4, 3) while the incorporation of Eu3+ into TbPO4 ·H2O lattice was evidenced by Starks splitting transitions at 590, 615, 693 nm of Eu3+ ions for the case of 11 at.% Eu3+-doped TbPO4 ·H2O. The results also indicated that both immunoglobulin G-conjugated undoped and Eu3+-doped TbPO4 ·H2O nanowires can be used in the fluorescent immune analysis as a biomedical label maker to identify measles viruses in vaccine testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.