Abstract
We report the first observation of an efficient, native membrane conjugation mechanism via positively charged, linear oligo-amines. Clustering of membrane fragments relies on electrostatic interactions between the net negative charge of the membranes and the positively charged, water-soluble mediators. This conjugation principle is demonstrated with two different bacterial membranes in which are embedded either the intrinsic membrane protein (MP) bacteriorhodopsin (bR) or the more recently identified xanthorhodopsin (XR). As determined by their characteristic UV–vis absorption spectra and by circular dichroism, the MPs are not significantly perturbed by the oligo-amines carrying from +3 to +6 positive charges. Light microscopy and scanning electron microscope (SEM) imaging provide direct evidence for membrane conjugation. Process efficiency was found to be correlated with the net charge of the oligo-amine used. Membrane conjugation is accomplished within a wide range of pH values (7−2.5); is reversed by NaCl; and does not require the presence of a precipitant (e.g. PEG) nor Ca2+ ions. Some evidence for bilayer fusion is also observed, but only in the presence of the +6 oligo-amine analog.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.