Abstract

In this work, we developed and optimized conjugates of carbon-coated iron nanoparticles (Fe@C) with streptavidin and monoclonal antibodies. The conjugation procedure included two stages. First, amino groups were grafted onto the carbon shell to facilitate noncovalent sorption of bovine serum albumin (BSA). Further, the covalent attachment of proteins to the BSA layer via glutaraldehyde coupling was performed. It was established and confirmed that the synthesis procedure is reproducible and allows preparation of stable conjugates. The resulting nanoparticles are clusters of Fe@C particles coated by proteins. The size of the clusters is in the range of 100-190 nm and can be controlled via the tuning of conjugation conditions, including pH, BSA-to-Fe@C ratio, etc. Conjugates of Fe@C with streptavidin and monoclonal antibodies (sizes of approximately 140-150 nm) were synthesized. Proton T2 relaxometry was used to detect these conjugates with very high sensitivity due to the magnetic markers, Fe@C. The relaxivity (r2) of different conjugates varied within the range of 290-450 1/s*mM. Conjugate applicability for relaxometry-based assay was confirmed by direct detection of streptococcal protein G and biotinylated BSA in a dot immunoassay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.