Abstract

We have reviewed the conjugation of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. The results of multiple spectroscopic methods and molecular modeling were analysed here and correlations between polyamine binding mode and protein structural changes were estabilished. Polyamine-protein bindings are mainly via hydrophilic and H-bonding contacts. BSA forms more stable conjugates than HSA and b-LG. Biogenic polyamines form more stable complexes than synthetic polyamines except in the case of b-LG, where the protein shows more hydrophobic character than HSA and BSA. The loading efficacies were 40⿿52%. Modeling showed the presence of several H-bonding systems, which stabilized polyamine-protein conjugates. Polyamine conjugation induced major alterations of serum protein conformations. The potential application of serum proteins in delivery of polyamines is evaluated here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.