Abstract

Described here is a UV photo-cross-linking method that utilizes the NBS (nucleotide binding site) for site-specific covalent functionalization of antibodies with reactive thiol moieties (UV-NBS(Thiol)), while preserving antibody activity. By synthesizing an indole-3-butyric acid (IBA) conjugated version of cysteine we site-specifically photo-cross-linked a reactive thiol moiety to antibodies at the NBS. This thiol moiety can then be used as an orthogonally reactive location to conjugate various types of functional ligands that possess a thiol reactive group through disulfide bond formation or reaction with a maleimide functionalized ligand. Our results demonstrate the utility of the UV-NBS(Thiol) method by successfully functionalizing a prostate specific antigen antibody (IgG(PSA)) with IBA-Thiol and subsequent reaction with maleimide-fluorescein. An optimal UV energy of 0.5-1.5 J/cm(2) was determined to yield the most efficient photo-cross-linking and resulted in 1-1.5 conjugations per antibody while preserving antibody/antigen binding activity and Fc recognition. Utilizing the IBA-Thiol ligand allows for an efficient means of site-specifically conjugating UV sensitive functionalities to antibody NBS that would otherwise not have been amenable by the previously described UV-NBS photo-cross-linking method. The UV-NBS(Thiol) conjugation strategy can be utilized in various diagnostic and therapeutic applications with nearly limitless potential for the preparation of site-specific covalent conjugation of affinity tags, fluorescent molecules, peptides, and chemotherapeutics to antibodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.