Abstract
This article explores protein conjugation of 7-oxodehydroabietic acid, a resin acid found in both aerosol from soldering with rosin flux and in rosin solids. In a murine model, conjugation (haptenation) of resin acids to proteins is required to generate antibodies against rosin. Hydroperoxy resin acids are dermal sensitizers, with haptenation thought to occur via radical mechanisms. Dermal sensitization to 7-oxodehydroabietic acid has been observed, although no radical haptenation mechanism has been proposed to explain the sensitizing properties of this compound. Conjugation of L-lysine to 7-oxodehydroabietic acid was predicted, with a Schiff base (or imine) linkage formed between C-7 of the resin acid and a free amino group of lysine. Fast atom bombardment mass spectrometry provided evidence of the conjugate; a small peak was seen for the conjugate (M+H)+ ion in aqueous ethanol with 20 mM concentrations of the free resin and amino acids. A larger conjugate peak was observed with addition of tertiary amine as a mild basic catalyst, and the intensity of the conjugate peak exceeded that of the precursors upon replacement of the ethanol with benzene. Resin acids accumulate in the plasma membrane, a non-aqueous environment apparently conducive to conjugation of 7-oxodehydroabietic acid with lysine side chains of membrane proteins. The result would be dehydroabietic acid covalently bound to protein, which could lead to interaction with immune cells having resin acid specificity. The haptenation mechanism presented may be involved in allergic contact dermatitis and occupational asthma observed from exposure to resin acid solids and aerosols. As sampling and analytical methods have been previously demonstrated for 7-oxodehydroabietic acid, this compound may be a useful exposure marker with relevance to negative health effects such as occupational asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.