Abstract
The design and regulation of multiple room-temperature phosphorescence (RTP) processes are formidably challenging due to the restrictions imposed by Kasha's rule. Here, we report a general design principle for materials that show multiple RTP processes, which is informed by our study of four compounds where there is modulation of the linker hybridization between donor (D) and acceptor (A) groups. Theoretical modeling and photophysical experiments demonstrate that multiple RTP processes can be achieved in sp3 C-linked D-A compounds due to the arrest of intramolecular electronic communication between two triplet states (T1H and T1L) localized on the donor and acceptor or between two triplet states, one localized on the donor and one delocalized across aggregated acceptors. However, for the sp2 C-linked D-A counterparts, RTP from one locally excited T1 state is observed because of enhanced excitonic coupling between the two triplet states of molecular subunits. Single-crystal and reduced density gradient analyses reveal the influence of molecular packing on the coincident phosphorescence processes and the origin of the observed aggregate phosphorescence. These findings provide insights into higher-lying triplet excited-state dynamics and into a fundamental design principle for designing compounds that show multiple RTP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.