Abstract
Mobile genetic elements (MGE) such as phages, plasmids and transposons play a crucial role in bacterial adaptation and evolution. These MGE mobilize and reorganize genes within a given genome or between bacterial cells. The impact of space flight conditions on these processes is largely unknown. The Mobilisatsia/Plasmida experiment was set up to investigate the impact of space flight conditions on plasmid-mediated conjugation. The experiment was done aboard the International Space Station during the Soyuz Mission 8S (April 19(th) until April 30(th) 2004). An experiment was performed with the Gram-positive Bacillus thuringiensis AND931 (carrying the conjugative plasmid pXO16), B. thuringiensis 4Q7 (with mobilizable plasmid pC194) and B. thuringiensis GBJ002 (final recipient). A second experiment was carried out with the Gram-negative Escherichia coli CM140 (carrying the conjugative plasmid RP4), E. coli CM1962 (with the mobilizable plasmid pMOL222) and Cupriavidus metallidurans AE815 (final recipient). It was observed by selective platings that plasmid exchange between the Gram-positive bacterial strains occurred in the space flight experiment. It is speculated that the latter plasmid exchange occurs more efficient than in the ground control experiment. No significant differences could be observed between space flight and ground control for the Gram-negative bacteria. The data indicate that plasmid exchange between microorganisms is occurring under space flight conditions. Since microorganisms are endogenous to any spacecraft and their presence considered as a possible jeopardy for manned space exploration, more experiments are needed to evaluate the occurrence and implications of microbial adaptation and evolution via MGE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.