Abstract

A class of highly stable hydrocarbon radicals with helical chirality are synthesized, which can be isolated and purified by routine column chromatography on silica gel. These carbon-centered radicals are stabilized by through-bond delocalization and intramolecular through-space conjugation, which is evidenced by Density Functional Theory (DFT) calculation. The high stability enables to directly modify the carbon radical via palladium-catalyzed cross-coupling with the radical being untapped. The structures and optoelectronic properties are investigated with a variety of experimental methods, including Electron Paramagnetic Resonance (EPR), Ultraviolet Visisble Near Infrared (UV-vis-NIR) measurements, Cyclic Voltammetry (CV), Thermogravimetry Analysis (TGA), Circular Dichroism (CD) spectra, High-Performance Liquid Chromatography (HPLC), and X-ray crystallographic analysis. DFT calculations indicated that the 9-anthryl helical radical is more stable than its tail-to-tail σ-dimer over 13.2kJmol-1 , which is consistent with experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call