Abstract
Various lipid-based nanocarriers have been developed for the co-delivery of protein antigens with immunological adjuvants. However, their in vivo potency in vaccine delivery is limited by structural instability, which causes off-target delivery and low cross-presentation efficacies. Recent works employ covalent cross-linking to stabilize the lipid nanostructures, though the immunogenicity and side effects of chemically modified protein antigens and lipids can cause a long-lasting safety issue. Here robust "conjugation-free" multilamellar protein antigen-lipid hybrid nanovesicles (MPLVs) are introduced through the antigen-mediated self-assembly of unilamellar lipid vesicles for the co-delivery of protein antigens and immunologic adjuvants. The nanocarriers coated with monophosphoryl lipid A and hyaluronic acids elicit highly increase antigen-specific immune responses in vitro and in vivo. The MPLVs increase the generation of immunological surface markers and cytokines in mouse-derived bone-marrow dendritic cells compared to soluble antigens with adjuvants. Besides, the vaccination of mice with the MPLVs significantly increase the production of anti-antigen antibody and interferon-gamma via the activation of CD4+ and CD8+ T cells, respectively. These findings suggest that MPLVs can serve as a promising nanovaccine delivery platform for efficient antigen cross-presentation through the efficient co-delivery of protein antigens with adjuvants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.