Abstract
Photodynamic therapy (PDT) is a treatment modality where light-mediated activation of photosensitizers in a patient's body leads to the generation of cytotoxic reactive oxygen species (ROS), eliminating cancer cells. One direction that has been firmly established over past years is the conjugation of photosensitizers with various molecules that demonstrate their own cytotoxic activity. As a result, improved selectivity and treatment outcomes are observed compared to those of unconjugated drugs. The attractiveness of such an approach is due to the variability of cytotoxic warheads and specific linkers available for the construction of conjugates. In this review, we summarize and analyze data concerning these inventions with the ultimate goal to find a promising conjugation partner for a porphyrinoid-based photosensitizer. The current challenges toward successful conjugation are also outlined and discussed. We hope that this review will motivate researchers to pay closer attention to conjugates and possibilities hidden in these molecules for the PDT of cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.