Abstract

Photosystem I (PS I) is a large pigment-protein complex embedded in the thylakoid membranes that performs light-driven electron transfer across the thylakoid membrane. Carbon nanotubes exhibit excellent electrical conductivities and excellent strength and stiffness. In this study, we generated PSI-carbon nanotube conjugates dispersed in a solution aimed at application in artificial photosynthesis. PS I complexes in which a carbon nanotube binding peptide was introduced into the middle of the PsaE subunit were conjugated on a single-walled carbon nanotube, orienting the electron acceptor side to the nanotube. Spectral and photoluminescence analysis showed that the PS I is bound to a single-walled carbon nanotube, which was confirmed by transmission electron microscopy. Photocurrent observation proved that the photoexcited electron originated from PSI and transferred to the carbon nanotube with light irradiation, which also confirmed its orientated conjugation. The PS I-carbon nanotube conjugate will be a useful nano-optoelectronic device for the development of artificial systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call