Abstract

AbstractDiscovering a competent charge transport layer promoting charge separation in photoelectrodes is a perpetual pursuit in photoelectrochemical (PEC) water splitting to achieve high solar‐to‐hydrogen (STH) conversion efficiency. Here, a conjugated polythiophene framework (CPF‐TTB) on Ta3N5 is elaborately electropolymerized, substantiating the hole transport behavior in their heterojunction. Tailored band structures of the CPF‐TTB/Ta3N5 reinforce the separation of photogenerated carriers, elevating a fill factor of the photoanode modified with a cocatalyst. The enhanced hole extraction enables the NiFeOx/CPF‐TTB/Ta3N5/TiN photoanode to generate a remarkable water oxidation photocurrent density of 9.12 mA cm−2 at 1.23 V versus the reversible hydrogen electrode. A tandem device combining the photoanode with a perovskite/Si solar cell implements an unbiased solar water splitting with a STH conversion efficiency of 6.26% under parallel illumination mode. This study provides novel strategies in interface engineering for metal nitride‐based photoelectrodes, suggesting a promise of the organic–inorganic hybrid photoelectrode for high‐efficiency PEC water splitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.