Abstract

Single-walled carbon nanotubes (SWNTs) are promising materials for generating high-performance electronic devices. However, these applications are greatly restricted by their lack of purity and solubility. Commercially available SWNTs are a mixture of semi-conducting (sc-) and metallic (m-) SWNTs and are insoluble in common solvents. Conjugated polymers can selectively disperse either sc- or m-SWNTs and increase their solubility; however, the conductivity of conjugated polymer-wrapped SWNTs is largely affected by the polymer side chains. Here, a poly(fluorene-co-phenylene) polymer that contains a self-immolative linker as part of its sidechains is reported. The self-immolative linker is stabilized with a tert-butyldimethylsilyl ether group that, upon treatment with tetra-n-butylammonium fluoride (TBAF), undergoes a 1,6-elimination reaction to release the sidechain. Sonication of this polymer with SWNTs in tetrahydrofuran (THF) results in concentrated dispersions that are used to prepare polymer-SWNT thin films. Treatment with TBAF caused side-chain cleavage into carbon dioxide and the corresponding diol, which can be easily removed by washing with solvent. This process is characterized by a combination of absorption and Raman spectroscopy, as well as four-point probe measurements. The conductance of the SWNT thin films increased ≈60-fold upon simple TBAF treatment, opening new possibilities for producing high-conductivity SWNT materials for numerous applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call