Abstract

3,4-Difluorothiophene-substituted aryls, i.e., 1,4-bis(3,4-difluorothiophen-2-yl)-benzene (Ph-2FTh), 1,4-bis(3,4-difluorothiophen-2-yl)-2,5-difluorobenzene (2FPh-2FTh), and 4,7-bis(3,4-difluorothiophen-2-yl)-2,1,3-benzothiadiazole (BTz-2FTh), are synthesized as C─H monomers for the synthesis of conjugated polymers (CPs) via direct arylation polycondensation (DArP) with diketopyrrolopyrrole (DPP) and isoindigo (IID) derivatives as C─Br monomers. The Gibbs free energies of activation for direct arylation (ΔG298K , kcal mol-1 ) for α─C─H bonds of thiophene moieties as calculated by density functional theory (DFT) are 14.3, 16.5, and 16.4kcal mol-1 for Ph-2FTh, 2FPh-2FTh and BTz-2FTh, respectively, meaning that inserting an electron-deficient unit in 3,3',4,4'-tetrafluoro-2,2'-bithiophene (4FBT, ΔG298K : 14.6kcal mol-1 ) may cause a reactivity decrease of the C─H monomers. Photophysical and semiconducting properties of the resulting six CPs (i.e., DPP-Ph, DPP-2FPh, DPP-BTz, 2FIID-Ph, 2FIID-2FPh, and 2FIID-BTz) are characterized in detail. DPP-based CPs show ambipolar transport properties while IID-based ones exhibited n-type behavior owing to the deeper frontier molecular orbital energy levels of IID-based CPs. With source/drain electrodes modified with polyethylenimine ethoxylated, n-channel organic thin-film transistors with maximum electron mobility of 0.40, 0.54, 0.29, 0.05, 0.16, and 0.01 cm2 V-1 s-1 for DPP-Ph, DPP-2FPh, DPP-BTz, 2FIID-Ph, 2FIID-2FPh, and 2FIID-BTz, respectively, are fabricated. DPP-2FPh exhibits the best device performance due to the good film morphology and the highest intermolecular packing order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call