Abstract

A conjugated polymer centered on fluorene and 2,1,3-benzothia-diazole (PFBT) is prepared for sensing CO2 in situ with high sensitivity and low background. Upon introducing CO2, the weaker electrostatic repulsion and stronger hydrophobic interactions between neighboring PFBT molecules enhance the interchain contacts compared to that without CO2, leading to the energy transfer from fluorene to 2,1,3-benzothia-diazole sites and the emission color shift from blue to green, which is sensitive to sensing CO2 in atmospheric air with a content of ∼400 ppm. Importantly, PFBT is employed to monitor photosynthesis and respiration upon cycling day and night in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.