Abstract
The ability to assemble artificial systems that mimic aspects of natural light-harvesting functions is fascinating and attractive for materials design. Given the complexity of such a system, a simple design pathway is desirable. Here, we argue that associative phase separation of oppositely charged conjugated polyelectrolytes (CPEs) can provide such a path in an environmentally benign medium: water. We find that complexation between an exciton-donor and acceptor CPE leads to formation of a complex fluid. We interrogate exciton transfer from the donor to the acceptor CPE within the complex fluid and find that transfer is highly efficient. We also find that excess molecular ions can tune the modulus of the inter-CPE complex fluid. Even at high ion concentrations, CPEs remain complexed with significantly delocalized electronic wavefunctions. Our work lays the rational foundation for complex, tunable aqueous light-harvesting systems via the intrinsic thermodynamics of associative phase separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.