Abstract

Organic solar cells (OSCs) using non-fullerene acceptors have delivered the highest efficiencies in the overall reported literatures. In order to improve the efficiency and stability of OSCs, great efforts are being made in designing and synthesizing new materials. Inverted OSCs were fabricated using three commercially available and inexpensive materials, 5-methylbenzoxazole (E1), 2-(4-biphenyl)-5-phenyloxazole (E2), and 4-bis(5-phenyl-2-oxazolyl)benzene (E3), as an interlayer between zinc oxide and the active layer. The new interlayer materials enhance the carrier injection/extraction properties and thus, the polymer solar cells (PSCs) exhibited an improved JSC and power conversion efficiency (PCE). PSCs showed an improved JSC of 27.18 from 24.88 mA/cm2 with the introduction of E3. The new interlayer, E3 in particular, forms well-aligned cascading energy levels between the PM6:Y6 active layer and zinc oxide layer. These cascading energy levels reduce the energy barrier for electron injection and collection at the interface. Thus, the PCE of devices reached a remarkable 16.52% using interlayer at the ZnO/active layer interface. The devices also exhibited improved device stability under continuous illumination, annealing, and high humidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call