Abstract

Conjugated microporous polymers (CMPs) with π-conjugated skeletons show great potential as energy storage materials due to their porous structure and tunable redox nature. However, CMPs and the structure-performance relationships have not been well explored for potassium-ion batteries (KIBs). Here, we report the structure-engineered CMP anodes with tunable electronic structures for high-performance KIBs. The results demonstrate that the electronic structure of the CMPs plays an important role in enhancing potassium storage capability, including the lowest unoccupied molecular orbital (LUMO) distribution, LUMO energy level, and band gap, which can be finely tuned by synthetic control. It was revealed that the poly(pyrene- co-benzothiadiazole) (PyBT) with optimized structure delivers a high reversible capacity of 428 mAh g-1 and shows an excellent cycling stability over 500 cycles. Our findings provide a fundamental understanding in the design of CMP anode materials for high-performance potassium-organic energy storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.