Abstract
Removal of indoor formaldehyde is important but challenging due to the very low concentration. Here, we showed the applicability of a new class of conjugated microporous poly(aniline)s (CMPAs) in this formaldehyde capture. The unique properties of rich ultramicroporosity and benzenoid amine (–NH–) groups made the resulting CMPAs ideal platforms for the efficient low-concentration formaldehyde adsorption, through the interaction between benzenoid amine groups and formaldehyde via Mannich reaction and H-bond in the ultramicropore. They therefore exhibited ultrafast adsorption, receiving > 80% removal efficiency for ca 0.7 ppm formaldehyde within 60 min, and benchmarking storage capacity, achieving ca. 2679.68 mg·g−1 for CMPA-2. Our CMPAs also worked well in a self-assembled air clean unit, keeping kinetically reducing average 98% of formaldehyde after treatment of 4000 BV polluted air (with ca. 25 ppm formaldehyde) without break-through. Outcomes highlighted the potential of CMPAs for the clean-up of airborne formaldehyde for human health protection in next generation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.