Abstract

This work deals with the study of the steady-state analysis of conjugated heat transfer process for the thermal entrance region of a developed laminar-forced convection flow of a power-law fluid in a circular tube. A known uniform heat flux is applied at the external surface of the tube. The energy equation in the fluid is solved analytically using the integral boundary layer approximation by neglecting the heat generation by viscous dissipation and the axial heat conduction in the fluid. This solution is coupled to the Laplace equation for the solid, where the axial heat conduction effects are taken into account. The governing equations are reduced to an integro-differential equation which is solved by analytical and numerical methods. The results are shown for different parameters such as conduction parameter, α, the aspect ratio of the tube, ε and the index of power-law fluid, n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.