Abstract

Multiple studies have explored using cage silsesquioxanes (SQs) as backbone elements in hybrid polymers motivated by their well-defined structures and physical and mechanical properties. As part of this general exploration, we report unexpected photophysical properties of copolymers derived from divinyl double decker (DD) SQs, [vinyl(Me)Si(O0.5 )2 ][PhSiO1.5 ]8 [(O0.5 )2 Si(Me)vinyl] (vinylDDvinyl). These copolymers exhibit strong emission red-shifts relative to model compounds, implying unconventional conjugation, despite vinyl(Me)Si(O-)2 siloxane bridges. In an effort to identify minimum SQ structures that do/do not offer extended conjugation, we explored Heck catalyzed co-polymerization of vinyl-ladder(LL)-vinyl compounds, vinyl(Me/Ph)Si(O0.5 )2 [PhSiO1.5 ]4 (O0.5 )2 Si(Me/Ph)vinyl, with Br-Ar-Br. Most surprising, the resulting oligomers show 30-60 nm emission red-shifts beyond those seen with vinylDDvinyl analogs despite lacking a true cage. Further evidence for unconventional conjugation includes apparent integer charge transfer (ICT) between LL-co-thiophene, bithiophene, and thienothiophene with 10 mol % F4 TCNQ, suggesting potential as p-type doped organic/inorganic semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.