Abstract
Photoanode material with high efficiency and stability is extensively desirable in photoelectrochemical (PEC) water splitting for green/renewable energy source. Herein, novel heterostructures is constructed via coating rutile TiO2 nanorods with metal organic framework (MOF) materials UiO-66 or UiO-67 (UiO-66@TiO2 and UiO-67@TiO2 ), respectively. The π electrons in the MOF linkers could increase the local electronegativity near the heterojunction interface due to the conjugation effect, thereby enhancing the internal electric field (IEF) at the heterojunction interface. The IEF could drive charge transfer following Z-scheme mechanism in the prepared heterostructures, inducing photogenerated charge separation efficiency increasing as 156% and 253% for the UiO-66@TiO2 and UiO-67@TiO2 , respectively. Correspondingly, the UiO-66@TiO2 and UiO-67@TiO2 enhanced the photocurrent density as approximate two- and threefolds compared with that of pristine TiO2 for PEC water oxidation in universal pH electrolytes. This work demonstrates an effective method of regulating the IEF of heterojunction toward further improved charge separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.