Abstract

Conjugate turbulent natural convection and surface radiation in rectangular enclosures heated from below and cooled from other walls, typically encountered in Liquid Metal Fast Breeder Reactor (LMFBR) subsystems, have been investigated by a finite volume method for various aspect ratios. The formulation comprises the standard two equation k– ε turbulence model with physical boundary conditions (no wall functions), along with the Boussinesq approximation, for the flow and heat transfer. As far as radiation is concerned, the radiosity – irradiation formulation for a transparent fluid of Prandtl number 0.7 has been employed. The conjugate coupling on the walls has been handled by using a fin type formulation. The Rayleigh number based on the width of the enclosure is varied from 10 8 to 10 12 and the aspect ratio is varied from 0.5 to 2.0. Detailed results including stream lines, temperature profiles, and convective, radiative and overall Nusselt numbers are presented. A correlation for the mean convection Nusselt number in terms of Rayleigh number and aspect ratio is proposed for design purposes. The influence of the wall emissivity and the external heat transfer coefficient on the heat transfer from the enclosure has also been investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.