Abstract

Building Integrated Concentrating Photovoltaic (BICPV) systems make use of optical elements to concentrate the incoming solar radiation on small-sized solar cells with the aim of integrating PV technology into the building. We present a novel conjugate system designed to utilize the merits of both reflective and refractive optics. The optical geometry under study is a dielectric based three-dimensional cross compound parabolic concentrator (3DCCPC) enveloped by a reflective geometry of similar shape whilst maintaining an air gap between them. Monte Carlo ray-trace simulations are used to model and optimize the system configuration. The theoretical analysis shows that the optical performance of the system can be improved by 11% whilst maintaining an air gap of 0.1 mm between the reflective and the refractive surfaces. Experiments are carried out by making a prototype of the proposed system to evaluate the proof of concept. A maximum power ratio of 2.76 was found under standard testing conditions at an incidence angle of 10°. Results show that the average power output from the proposed system increases by 5.46% compared to its predecessor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.