Abstract

A two-dimensional numerical analysis of combined heat transfer (transient natural convection, surface thermal radiation and conduction) in an air filled square enclosure having heat-conducting solid walls of finite thickness and a local heat source in conditions of convective heat exchange with an environment has been carried out. The governing equations formulated in terms of the dimensionless stream function, vorticity and temperature have been numerically solved using the finite difference method. Particular efforts have been focused on the effects of five types of influential factors such as the Rayleigh number 104 ≤ Ra ≤106, the internal surface emissivity 0 ≤ ɛ < 1, the thermal conductivity ratio 1 ≤ k1,2 ≤ 1000, the ratio of solid wall thickness to cavity spacing 0.1 ≤ l/L ≤ 0.3 and the dimensionless time 0 ≤ τ ≤ 100 on the fluid flow and heat transfer. Comprehensive Nusselt numbers data are presented as functions of the governing parameters mentioned above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.