Abstract
This paper considers duality in convex vector optimization. A vector optimization problem requires one to find all the efficient points of the attainable value set for given multiple objective functions. Embedding the primal problem into a family of perturbed problems enables one to define a dual problem in terms of the conjugate map of the perturbed objective function. Every solution of the stable primal problem is associated with a certain solution of the dual problem, which is characterized as a subgradient of the perturbed efficient value map. This pair of solutions also provides a saddle point of the Lagrangian map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.