Abstract

Conjugate heat transfer in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a flat plate of finite thickness is one of the important problems as it mimics closely with industrial applications. The standard high Reynolds number two-equation k–ε eddy viscosity model has been used as the turbulence model. The turbulence intensity and the Reynolds number considered at the inlet are 2% and 15,000, respectively. The bottom face of the impingement plate is maintained at a constant temperature higher than the jet exit temperature and subjected with constant heat flux for the two cases considered in the study. The confinement plate is considered to be adiabatic. A parametric study has been done by analyzing the effect of nozzle-to-plate distance (4–8), Prandtl number of the fluid (0.1–100), thermal conductivity ratio of solid to fluid (1–1000), and impingement plate thickness (1–10) on distribution of solid–fluid interface temperature, bottom surface temperature (for constant heat flux case), local Nusselt number, and local heat flux. Effort has been given to relate the heat transfer behavior with the flow field. The crossover of distribution of local Nusselt number and local heat flux in a specified region when plotted for different nozzle-to-plate distances has been discussed. It is found that the Nusselt number distribution for different thermal conductivity ratios of solid-to-fluid and impingement plate thicknesses superimposed with each other indicating that the Nusselt number as a fluid flow property remains independent of solid plate properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.