Abstract

A conjugate mixed convection heat transfer problem of a second-grade viscoelastic fluid past a horizontal flat-plate fin has been studied. Governing equations include heat conduction equation of the fin, and continuity equation, momentum equation and energy equation of the fluid, have been analyzed by a combination of a series expansion method, the similarity transformation and a second-order accurate finite difference method. Solutions of a stagnation flow ( β = 1.0) at the fin tip and a flat-plate flow ( β = 0) on the fin surface were obtained by a generalized Falkner–Skan flow derivation. These solutions have been used to iterate with the heat conduction equation of the fin to obtain distributions of the local convective heat transfer coefficient and the fin temperature. Ranges of dimensionless parameters, the Prandtl number ( Pr), the elastic number ( E), the free convection parameter ( G) and the conduction–convection coefficient ( N cc) are from 0.1 to 100, 0.001 to 0.01, 0 to 1.5 and 0.05 to 2.0, respectively. The elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a horizontal flat-plate fin. In addition, same as results from Newtonian fluid flow and conduction analysis of a horizontal flat-plate fin, a better heat transfer has been obtained with a larger N cc, G and Pr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.