Abstract

Conjugate heat transfer from a surface-mounted block (31 × 31 × 7 mm3) to forced convective air flow (1–7 m/s) in a parallel-plate channel was studied experimentally and analytically. Particular attention was directed to the heat flow from the block to the floor through the block support, which was eventually transferred to the air flow over the floor. The concepts of adiabatic wall temperature (Tad) and adiabatic heat transfer coefficient (had) were employed to account for the effect of thermal wake shed from the block on the heat transfer from the floor. The experimental data of Tad and had were used in setting the boundary condition for the numerical analysis of heat conduction in the floor. The accuracy of the numerical predictions of the thermal conductances for different heat flow paths was proven experimentally. The heat conduction analysis code was then used to find the heat transfer capability of various block-support/floor combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.