Abstract

The parametric adaptive matched filter (PAMF) detector for space-time adaptive processing (STAP) detection is re-examined in this paper. Originally, the PAMF detector was introduced by using a multichannel autoregressive (AR) parametric model for the disturbance signal in STAP detection. While the parametric approach brings in benefits such as significantly reduced training and computational requirements as compared with fully adaptive STAP detectors, the PAMF detector as a reduced-dimensional solution remains unclear. This paper employs the conjugate-gradient (CG) algorithm to solve the linear prediction problem arising in the PAMF detector. It is shown that CG yields not only a new computationally efficient implementation of the PAMF detector, but it also offers new perspectives of PAMF as a reduced-rank subspace detector. The CG algorithm is first introduced to provide alternative implementations for the matched filter (MF) and parametric matched filter (PMF) when the covariance matrix of the disturbance signal is known. It is then extended to the adaptive case where the covariance matrix is estimated from training data. Important issues such as unknown model order and convergence rate are discussed. Performance of the proposed CG-PAMF detector is examined by using the KASSPER and other computer generated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.