Abstract

A fundamental advantage of the boundary element method (BEM) is that the dimensionality of the problems is reduced by one. However, this advantage has to be weighted against the difficulty in solving the resulting systems of algebraic linear equations whose matrices are dense, non-symmetric and sometimes ill conditioned. For large three-dimensional problems the application of the classical direct methods becomes too expensive. This paper studies the comparative performance of iterative techniques based on conjugate gradient solvers as bi-conjugate gradient (Bi-CG), generalized minimal residual (GMRES), conjugate gradient squared (CGS), quasi-minimal residuals (QMR) and bi-conjugate gradient stabilized (Bi-CGStab) for potential and exterior problems. Preconditioning is also considered and assessed. Two examples, one from electrostatics and other from fluid mechanics, were employed to test these methods, which proved to be effective and competitive as solvers for BEM linear algebraic systems of equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.