Abstract
We study the parallel computation of linear second order elliptic Partial Differential Equation (PDE) problems in rectangular domains. We discuss the application of Conjugate Gradient (CG) and Preconditioned Conjugate Gradient (PCG) methods to the linear system arising from the discretisation of such problems using quadratic splines and the collocation discretisation methodology. Our experiments show that the number of iterations required for convergence of CG-QSC (Conjugate Gradient applied to Quadratic Spline Collocation equations) grows linearly with the square root of the number of equations. We implemented the CG and PCG methods for the solution of the Quadratic Spline Collocation (QSC) equations on the iPSC/2 hypercube and present performance evaluation results for up to 32 processors configurations. Our experiments show efficiencies of the order of 90%, for both the fixed and scaled speedups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.