Abstract
The conjugate gradient (CG) method exhibits fast convergence speed than the steepest descent, which has received considerable attention. In this work, we propose two CG-based methods for nonlinear active noise control (NLANC). The proposed filtered-s Bessel CG (FsBCG)-I algorithm implements the functional link artificial neural network (FLANN) as a controller, and it is derived from the Matérn kernel to achieve enhanced performance in various environments. On the basis of the FsBCG-I algorithm, we further develop the FsBCG-II algorithm, which utilizes the Bessel function of the first kind to constrain outliers. As an alternative, the FsBCG-II algorithm has reduced computational complexity and similar performance as compared to the FsBCG-I algorithm. Moreover, the convergence property of the algorithms is analyzed. The proposed algorithms are compared with some highly cited previous works. Extensive simulation results demonstrate that the proposed algorithms can achieve robust performance when the noise source is impulsive, Gaussian, logistic, and time-varying.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.