Abstract

The conjugate gradient (CG) method exhibits fast convergence speed than the steepest descent, which has received considerable attention. In this work, we propose two CG-based methods for nonlinear active noise control (NLANC). The proposed filtered-s Bessel CG (FsBCG)-I algorithm implements the functional link artificial neural network (FLANN) as a controller, and it is derived from the Matérn kernel to achieve enhanced performance in various environments. On the basis of the FsBCG-I algorithm, we further develop the FsBCG-II algorithm, which utilizes the Bessel function of the first kind to constrain outliers. As an alternative, the FsBCG-II algorithm has reduced computational complexity and similar performance as compared to the FsBCG-I algorithm. Moreover, the convergence property of the algorithms is analyzed. The proposed algorithms are compared with some highly cited previous works. Extensive simulation results demonstrate that the proposed algorithms can achieve robust performance when the noise source is impulsive, Gaussian, logistic, and time-varying.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call