Abstract

An approach of using conjugate gradient and classic steepest descent search direction onto quasi-Newton search direction had been proposed in this paper and we called it as 'scaled CGSD-QN' search direction. A new coefficient formula had been successfully constructed for being used in the 'scaled CGSD-QN' search direction and proven here that the coefficient formula is globally converge to the minimizer. The Hessian update formula that has been used in the quasi-Newton algorithm is DFP update formula. This new search direction approach was testes with some some standard unconstrained optimization test problems and proven that this new search direction approach had positively affect quasi-Newton method by using DFP update formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.