Abstract

AbstractSeismic anisotropy is sensitive to the alignment of minerals, fluid‐filled cracks, and fractures caused by fault deformation, thus providing a signature of fault deformation, especially in the aseismic layer. In this study, we use seismic traveltime anisotropy tomography to study the spatial distribution of azimuthal anisotropy in the region of the 2013 Mw 6.6 Lushan earthquake. Our analysis reveals both stress‐induced and structure‐controlled seismic anisotropy mechanisms. The distribution of seismicity and anisotropy clearly delineates conjugate faults in the seismogenic zone between depths of 8 and 15 km. Two near‐vertical stripes or zones of strong seismic anisotropy reveal the continuation of these faults into the diagenetic or overlying aseismic crust. The anisotropic corridors associated with the conjugate faults are interpreted in terms of the crystal preferred orientation of fault rock minerals, which may be enhanced by shear‐band compaction. Our results demonstrate how seismic anisotropy can provide new insights into fault deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call