Abstract
In this paper, conjugate duality results for convexlike set-valued vector optimization problems are presented under closedness or boundedness hypotheses. Some properties of the value mapping of a set-valued vector optimization problem are studied. A conjugate duality result is also proved for a convex set-valued vector optimization problem without the requirements of closedness and boundedness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.