Abstract

We consider topology changing transitions for M-theory compactifications on Calabi-Yau fourfolds with background G-flux. The local geometry of the transition is generically a genus g curve of conifold singularities, which engineers a 3d gauge theory with four supercharges, near the intersection of Coulomb and Higgs branches. We identify a set of canonical, minimal flux quanta which solve the local quantization condition on G for a given geometry, including new solutions in which the flux is neither of horizontal nor vertical type. A local analysis of the flux superpotential shows that the potential has flat directions for a subset of these fluxes and the topologically different phases can be dynamically connected. For special geometries and background configurations, the local transitions extend to extremal transitions between global fourfold compactifications with flux. By a circle decompactification the M-theory analysis identifies consistent flux configurations in four-dimensional F-theory compactifications and flat directions in the deformation space of branes with bundles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.