Abstract
In this paper we show that conifold transitions between Calabi-Yau 3-folds can be used for the construction of mirror manifolds and for the computation of the instanton numbers of rational curves on complete intersection Calabi-Yau 3-folds in Grassmannians. Using a natural degeneration of Grassmannians G( k, n) to some Gorenstein toric Fano varieties P( k, n) with conifolds singularities which was recently described by Sturmfels, we suggest an explicit mirror construction for Calabi-Yau complete intersections X ⊂ G( k, n) of arbitrary dimension. Our mirror construction is consistent with the formula for the Lax operator conjectured by Eguchi, Hori and Xiong for gravitational quantum cohomology of Grassmannians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.