Abstract

In angiosperms, the WOX family of transcription factors has important functions in meristem regulation and in control of the partitioning of developing embryos into functional domains. In this study, a putative WOX2 homologous gene was isolated from Picea abies, and its expression pattern during somatic embryo development was followed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). We used strategies of both absolute and relative quantification of gene expression, and benefits and disadvantages of the two methods are presented and discussed. During embryogenesis, PaWOX2 expression was highest at the earliest stages of development, but low levels were also detected in seedling tissues. No PaWOX2 expression was detected in a non-embryogenic cell culture, indicating that PaWOX2 plays a fundamental role during early somatic embryo development, and can be used as a possible marker for embryogenic potential. Additional results show that conifers, like angiosperms, contain a large number of WOX-related genes, many of them expressed during embryo development. In phylogenetic analysis based on the deduced homeodomain of retrieved pine and spruce EST sequences, no conifer WUS homolog was found. Neither did we find any homeodomain to cluster with WOX5. Interestingly, a clade including only conifer sequences derived from various tissues was resolved as sister to a Physcomitrella WOX-like gene, suggestive of the early origin of this gene family. Our results thus provide basic information for further studies of the evolution of this gene family and of their function in relation to meristem dynamics and specification of stem cells in gymnosperms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call