Abstract

Embryogenic cultures have been produced for a wide range of conifers and current methods developed for spruce permit the maturation of high quality embryos that can be desiccated and then germinated to form plantlets. Embryogenic suspensions consisting of immature embryos are an excellent source of regenerable protoplasts. This review considers examples of applications of embryogenic suspension cultures for basic studies in three areas of plant cell biology. a) Immunofluorescence studies of microtubules in mitotic spruce cells reveal focused spindle poles at prophase and anphase, suggesting the presence of microtubule organizing centers (MTOCs). Antibodies known to recognize animal MTOCs do not stain the polar regions but do stain developing kinetochores. b) Embryo-derived protoplasts regenerate directly to somatic embryos. Fluorescence studies of the cytoskeleton in freshly derived protoplasts reveal random cortical microtubules and a fine network of actin filaments. During culture, protoplasts change shape and develop transverse cortical microtubule arrays. Embryonal cells of newly formed embryos possess distinctive arrays of cortical microtubules and networks of fine actin filaments while suspensor cells are characterized by transverse cortical microtubules and longitudinal actin cables. c) Transmission electron microscope studies of endocytosis in spruce protoplasts reveal an endocytotic pathway similar to that described previously for soybean. Uptake results are confirmed using high pressure freeze fixation instead of conventional chemical fixation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call