Abstract

In the manner of Steiner’s interpretation of conics in the projective plane we consider a conic in a planar incidence geometry to be a pair consisting of a point and a collineation that does not fix that point. We say these loci are intrinsic to the collineation group because their construction does not depend on an imbedding into a larger space. Using an inversive model we classify the intrinsic conics in the hyperbolic plane in terms of invariants of the collineations that afford them and provide metric characterizations for each congruence class. By contrast, classifications that catalogue all projective conics intersecting a specified hyperbolic domain necessarily include curves which cannot be afforded by a hyperbolic collineation in the above sense. The metric properties we derive will distinguish the intrinsic classes in relation to these larger projective categories. Our classification emphasizes a natural duality among congruence classes induced by an involution based on complementary angles of parallelism relative to the focal axis of each conic, which we refer to as split inversion (Definition 5.3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call