Abstract

The Linear Programming Problem is manipulated to be stated as a Non-Linear Programming Problem in which Karmarkar's logarithmic potential function is minimized in the positive cone generated by the original feasible set. The resulting problem is then solved by a master algorithm that iteratively rescales the problem and calls an internal unconstrained non-linear programming algorithm. Several different procedures for the internal algorithm are proposed, giving priority either to the reduction of the potential function or of the actual cost. We show that Karmarkar's algorithm is equivalent to this method in the special case in which the internal algorithm is reduced to a single steepest descent iteration. All variants of the new algorithm have the same complexity as Karmarkar's method, but the amount of computation is reduced by the fact that only one projection matrix must be calculated for each call of the internal algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.