Abstract

Previous experimental and theoretical studies have demonstrated that nanofabricated synthetic channels are able to pump ions using oscillating electric fields. We proposed that conical pores with oscillating surface charges are particularly effective for pumping ions due to rectification that arises from their asymmetric structure. In this work, the energy and thermodynamic efficiency associated with salt pumping using the conical pore pump is studied, with emphasis on pumps needed to desalinate seawater. The energy efficiency is found to be as high as 0.60 to 0.83 mol/kJ when the radius of the tip side of the conical pore is two Debye lengths and the pump works with a concentration gradient smaller than 1.5. As a result, the energy consumption needed for seawater desalination with 20% salt rejection is 0.32 kJ/L. In addition, the energy consumption can be further reduced to 0.21 kJ/L (20% salt rejection) if the bias voltage is adaptively altered four times during the pump cycle while salt concentration is reduced. If the bias voltage is adaptively increased to higher values, then salt rejection can be improved to values that are needed to produce fresh water that satisfies standard requirements. Numerical analysis indicates that the energy consumption is 4.9 kJ/L for 98.6% salt rejection, which is smaller than the practical minimum energy requirement for RO-based methods. In addition, the pumping efficiency can be further improved by tuning the pump structure, increasing the surface charge, and employing more adaptive bias voltages. The conical pores are also found to more efficiently counteract the concentration gradient compared to cylindrical counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.