Abstract
We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non-Adiabatic Coupling Terms (NACTs) for the three lowest singlet states of H3 (+) in hyperspherical coordinates as functions of hyperangles (θ and ϕ) for a grid of fixed values of hyperradius (1.5 ⩽ ρ ⩽ 20 bohrs) using the MRCI level of methodology employing ab initio quantum chemistry package (MOLPRO). The NACT between the ground and the first excited state translates along the seams on the θ - ϕ space, i.e., there are six Conical Intersections (CIs) at each θ (60° ⩽ θ ⩽ 90°) within the domain, 0 ⩽ ϕ ⩽ 2π. While transforming the adiabatic PESs to the diabatic ones, such surfaces show up six crossings along those seams. Our beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs. Since the location of CIs and the spatial amplitudes of NACTs are most prominent around ρ = 10 bohrs, generally only those results are depicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.