Abstract

Chemiluminescence (CL) utilizing chemiexcitation for energy transformation is one of the most highly sensitive and useful analytical techniques. The chemiexcitation is a chemical process of a ground-state reactant producing an excited-state product, in which a nonadiabatic event is facilitated by conical intersections (CIs), the specific molecular geometries where electronic states are degenerated. Cyclic peroxides, especially 1,2-dioxetane/dioxetanone derivatives, are the iconic chemiluminescent substances. In this Perspective, we concentrated on the CIs in the CL of cyclic peroxides. We first present a computational overview on the role of CIs between the ground (S0) state and the lowest singlet excited (S1) state in the thermolysis of cyclic peroxides. Subsequently, we discuss the role of the S0/S1 CI in the CL efficiency and point out misunderstandings in some theoretical studies on the singlet chemiexcitations of cyclic peroxides. Finally, we address the challenges and future prospects in theoretically calculating S0/S1 CIs and simulating the dynamics and chemiexcitation efficiency in the CL of cyclic peroxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call