Abstract
We investigate the conical diffraction in Kagome lattice (KL) theoretically and numerically. According to the plane wave expansion method, we obtain the band structure of KL, in which there are Dirac cones and a flat band. The band structure of KL with pointy edges is also discussed, in which the edge state is around the boundary of the first Brillouin zone. The approximate Dirac cone state which is between the bulk states and the edge states is used to observe the linear and nonlinear conical diffractions during propagation. Both the Kerr nonlinearity and the saturable nonlinearity have been considered, and we find that the profile of conical diffraction will be deformed from circular to triangular. Last but not least, we find that the profile of nonlinear conical diffraction is strongly affected by the nonlinearity type, which is self-focusing or self-defocusing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Results in Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.