Abstract

SummaryThis paper interprets the Conic Sector stability results of Zames, and the multivariable generalizations provided by Safonov and Athans, in an integral quadratic constraint context. The ideas are formulated for the case where one element of a feedback interconnection is linear and the other satisfies a conic sector condition. This scenario allows the main stability results to be formulated using integral quadratic constraints, with all finite‐sector cases being captured using this framework. The stability results are expressed using frequency domain inequalities or linear‐matrix inequalities. Some examples show how the main technical result can, in the multivariable case, be used to provide a reduction in conservatism over standard results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.