Abstract

We show how the classical theory of projective conics provides new insights and results on the problem of 3D reconstruction from two images taken with uncalibrated cameras. The close relationship between Kruppa equations and Poncelet's Porism is investigated, leading, in particular, to a closed-form geometrically meaningful parameterization of the set of Euclidean reconstructions compatible with two images taken with cameras with constant intrinsic parameters and known pixel shape. An experiment with real images, showing the applicability of the method, is included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.